Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato.
نویسندگان
چکیده
The phytohormone auxin is known to regulate several aspects of plant development, and Aux/IAA transcription factors play a pivotal role in auxin signaling. To extend our understanding of the multiple functions of Aux/IAAs further, the present study describes the functional characterization of Sl-IAA27, a member of the tomato Aux/IAA gene family. Sl-IAA27 displays a distinct behavior compared with most Aux/IAA genes regarding the regulation of its expression by auxin, and the Sl-IAA27-encoded protein harbors a unique motif of unknown function also present in Sl-IAA9 and remarkably conserved in monocot and dicot species. Tomato transgenic plants underexpressing the Sl-IAA27 gene revealed multiple phenotypes related to vegetative and reproductive growth. Silencing of Sl-IAA27 results in higher auxin sensitivity, altered root development and reduced Chl content in leaves. Both ovule and pollen display a dramatic loss of fertility in Sl-IAA27 down-regulated lines, and the internal anatomy of the flower and the fruit are modified, with an enlarged placenta in smaller fruits. In line with the reduced Chl content in Sl-IAA27 RNA interference (RNAi) leaves, genes involved in Chl synthesis display lower expression at the level of transcript accumulation. Even though Sl-IAA27 is closely related to Sl-IAA9 in terms of sequence homology and the encoded proteins share common structural features, the data indicate that the two genes regulate tomato fruit initiation and development in a distinct manner.
منابع مشابه
Sl-IAA27 gene expression is induced during arbuscular mycorrhizal symbiosis in tomato and in Medicago truncatula.
Aux/IAA genes play a pivotal role in auxin transcriptional regulation. Their functions were mainly studied in Arabidopsis through analysis of gain-of-function mutants. In the tomato, the Solanaceae reference species, different studies on Sl-IAA down-regulated lines showed specific role for Sl-IAA genes. Our recent work revealed that the Sl-IAA 27 gene displays a distinct behavior compared with ...
متن کاملGenome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato.
Auxin is a central hormone that exerts pleiotropic effects on plant growth including the development of roots, shoots, flowers and fruit. The perception and signaling of the plant hormone auxin rely on the cooperative action of several components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play a pivotal role. In this study, we identified and comprehensively analyzed the entire A...
متن کاملSl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth
Whereas the interplay of multiple hormones is essential for most plant developmental processes, the key integrating molecular players remain largely undiscovered or uncharacterized. It is shown here that a member of the tomato auxin/indole-3-acetic acid (Aux/IAA) gene family, Sl-IAA3, intersects the auxin and ethylene signal transduction pathways. Aux/IAA genes encode short-lived transcriptiona...
متن کاملThe tomato SlIAA15 is involved in trichome formation and axillary shoot development.
The Aux/IAA genes encode a large family of short-lived proteins known to regulate auxin signalling in plants. Functional characterization of SlIAA15, a member of the tomato (Solanum lycopersicum) Aux/IAA family, shows that the encoded protein acts as a strong repressor of auxin-dependent transcription. The physiological significance of SlIAA15 was addressed by a reverse genetics approach, revea...
متن کاملThe tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis.
Auxin/indole-3-acetic acid (Aux/IAA) proteins are transcriptional regulators that mediate many aspects of plant responses to auxin. While functions of most Aux/IAAs have been defined mainly by gain-of-function mutant alleles in Arabidopsis thaliana, phenotypes associated with loss-of-function mutations have been scarce and subtle. We report here that the downregulation of IAA9, a tomato (Solanu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 53 9 شماره
صفحات -
تاریخ انتشار 2012